Skip to main content
SLAC National Accelerator Laboratory
LCLSLinac Coherent Light Source

User Portal Login   |  LCLS Internal Site

Main navigation

  • About
    • Organizational Chart
    • People & Committees
      • Leadership
      • Users' Executive Committee
      • Scientific Advisory Committee
      • LCLS Detector Advisory Committee
      • Proposal Review Panel
      • SLAC Photon Science Faculty
      • Users' Recognition Award
      • Young Investigator Award
    • Strategic Plan 2023-2028
    • Our Science
    • Internships
      • Intern Testimonials
      • Summer Student Poster Sessions
    • Jobs
    • Multimedia
      • Virtual Tours
      • Fact Sheets & Infographics
      • Image Gallery
      • Youtube Videos
    • Coming to SLAC
    • Contact Us
  • User Resources
    • User Research Administration (URA) Office
    • Schedules
    • Proposals
      • Proposal Preparation Guidelines
      • MeV-UED Proposals
      • Proposal Review Process
      • Run 25 Proposal Call
      • Universal Proposal System (UPS)
      • Submit Proposal
      • Archived Proposal Calls
    • User Agreements
    • Policies
    • Proprietary Research
    • Safety & Training
      • Work Planning & Control
      • LCLS Building Orientation
      • Hutch 6 Non-Permit Confined Space Training
      • Sample Delivery Training
      • Sample Prep Lab Training
    • SLAC User Access Requirements
      • Computer Accounts
      • Data Collection & Analysis (PCDS)
      • DAQ
      • Shipping Equipment & Materials
      • Financial Accounts
    • Links By Category
  • Publications
    • LCLS Publications
    • Search Publications
    • Submit New Publication
    • Archived Publications
  • Instruments
    • chemRIXS
      • Science Goals
      • Experimental Methods
      • Specifications
      • Standard Configurations
      • Publications
    • CXI
      • Experimental Methods
      • Specifications
      • Components
      • Standard Configurations
      • Publications
    • MEC
      • Science Goals
      • Experimental Methods
      • Specifications
      • Diagnostics & Components
      • Standard Configurations
      • Lasers & Beam Delivery
      • Publications
    • MFX
      • Science Goals
      • Experimental Methods
      • Specifications
      • Standard Configurations
      • Publications
    • qRIXS
      • Science Goals
      • Experimental Methods
      • Layout & Specifications
      • Capabilities
    • TMO
      • Science Goals
      • Layout & Specifications
      • Standard Configuration
      • Publications
    • TXI
      • Science Goals
      • Experimental Methods
      • Layout & Specifications
    • XCS
      • Experimental Methods
      • Specifications
      • Components
      • Standard Configurations
      • Operation Modes
      • Publications
    • XPP
      • Science Goals
      • Experimental Methods
      • Specifications
      • Components
      • Standard Configurations
      • Publications
    • MeV-UED
      • Specifications
      • Run 6 Scientific Capabilities
      • Schematics
      • Endstations
      • Proposals
      • Proposal Review Process
      • Schedule
      • Publications
    • LCLS-II-HE
    • DXS
      • Science Goals
      • Experimental Methods
      • Specifications
    • Instrument Maps
    • Standard Configurations
  • Machine
    • Machine Status
    • Machine FAQ (NC Linac)
    • Parameters
    • Schedules
  • Projects
    • LCLS-II
      • Science
      • Design & Performance
      • Commissioning
    • LCLS-II-HE
      • Science
      • Design & Performance
      • Meetings and Reports
      • Instruments
      • Internal Site
    • MEC-U
      • Science Mission
      • Design & Performance
      • Workshops & Meetings
      • Publications
      • News
      • Resources & Photos
      • Internal Site
  • Departments
    • SRD Leadership
    • Atomic, Molecular, & Optical Sciences
      • Research Interests
      • People
      • Research Highlights
      • Attosecond Science Campaign
    • Biological Sciences & Sample Preparations
      • Sample Environment & Delivery
      • Sample Preparation Laboratories
      • Biolabs at the Arrillaga Science Center (ASC)
      • Equipment Inventory
      • Chemical Inventory
    • Chemical Sciences
      • Research Interests
      • People
      • News & Highlights
      • Publications
    • Material Sciences
      • Research Interests
      • People
    • Matter in Extreme Conditions
      • Research Interests
      • People
      • Publications
    • Laser Sciences
      • Research Interests
      • Laser Capabilities​
      • People
      • User Resources
    • Detectors
      • Technologies
      • People
      • User Resources
    • Experiment Data Systems
      • Infrastructure
      • People
      • Projects
      • User Resources
    • Experiment Control Systems
      • Leadership
  • News
    • LCLS Science SLAC News Feed
    • Announcements & Updates
    • External News Features
      • Archive
  • Links

Breadcrumb

  1. Home
  2. Instruments
  3. QRIXS
  4. …
Facebook Share X Post LinkedIn Share Email Send
  • chemRIXS
    • Science Goals
    • Experimental Methods
    • Specifications
    • Standard Configurations
    • Publications
  • CXI
    • Experimental Methods
    • Specifications
    • Components
    • Standard Configurations
    • Publications
  • MEC
    • Science Goals
    • Experimental Methods
    • Specifications
    • Diagnostics & Components
    • Standard Configurations
    • Lasers & Beam Delivery
    • Publications
  • MFX
    • Science Goals
    • Experimental Methods
    • Specifications
    • Standard Configurations
    • Publications
  • qRIXS
    • Science Goals
    • Experimental Methods
    • Layout & Specifications
    • Capabilities
  • TMO
    • Science Goals
    • Layout & Specifications
    • Standard Configuration
    • Publications
  • TXI
    • Science Goals
    • Experimental Methods
    • Layout & Specifications
  • XCS
    • Experimental Methods
    • Specifications
    • Components
    • Standard Configurations
    • Operation Modes
    • Publications
  • XPP
    • Science Goals
    • Experimental Methods
    • Specifications
    • Components
    • Standard Configurations
    • Publications
  • MeV-UED
    • Specifications
    • Run 6 Scientific Capabilities
    • Schematics
    • Endstations
    • Proposals
    • Proposal Review Process
    • Schedule
    • Publications
  • LCLS-II-HE
  • DXS
    • Science Goals
    • Experimental Methods
    • Specifications
  • Instrument Maps
  • Standard Configurations

qRIXS Science Goals

Strong coupling between charge, spin, orbitals, and lattice motion in quantum materials gives rise to collective modes that determine the macroscopic material properties of profound interest such as high-temperature superconductivity, colossal magnetoresistivity, and topologically protected phases. 

Momentum-resolved resonant inelastic X-ray scattering (q-RIXS) has emerged as a powerful tool to characterize collective excitations for comparison with fundamental theoretical models based on the Kramers-Heisenberg approach. Because the ground states of quantum materials arise from a subtle balance among competing interactions, the relevant emergent collective modes appear at modest energies, typically up to a few hundreds of meVs but with a number of excitations lying below 100 meV, where the required combination of photon flux and energy resolution press the limits of modern X-ray sources and spectrometers.

The high repetition rate of LCLS-II will offer transformative capabilities—for both characterizing collective modes and excited states (energy and momentum dependence across the Brillouin zone), and for following their response to tailored external stimuli to disentangle coupled phenomena in the time domain. 

For example recent studies have shown that broadband THz pulses can selectively couple to electronic order, and thereby transiently decouple charge and lattice modes. Such approaches can also trigger phase transitions and create new phases that are inaccessible in thermal equilibrium. Tailored ultrafast vibrational excitation has been shown to drive insulator-to-metal phase transitions in colossal magnetoresistant (CMR) manganites, and enhanced superconductivity is claimed to result from transiently-driven nonlinear lattice dynamics. 

These novel photo-induced phenomena are ultimately related to the emergent properties in equilibrium and are a key step towards active control, yet a clear interpretation and characterization of the collective modes in the transient regime is still lacking.

 

First Experiments for qRIXS Will Include:

First experiments at LCLS-II will provide crucial pieces of information by time- and momentum- resolved RIXS (qRIXS instrument, NEH 2.2). In cuprates, Cu L-edge RIXS will map the evolution of magnetic excitations and phonons in time, energy, and momentum to provide a more complete microscopic picture about the transient superconducting phase. The time-evolution of charge-stripe order, a co-existing state in superconducting cuprates, and its associated excitations can be simultaneously monitored. 

This will provide new insights into the much-debated issue of the role of charge order in high-TC superconductivity, as well as provided quantitative assessment of the strength of spin fluctuations and electron-phonon coupling as candidates for a superconducting pairing mechanism. 

This approach is applicable to many other outstanding problems in quantum materials, such as the relation of recently discovered collective modes near the zone center and the role of magnetic fluctuations in the electron-doped cuprates, as well as more generally to excitations in multi-ferroics, topological spin liquids, and understanding battery cathodes.

See documents on first experiments for NEH 2.2

qRIXS contacts

Georgi Dakovski

qRIXS Instrument Lead
(650) 926-5703    
[email protected]

Kayla Ninh

Area Manager  
(650) 926-2934  
[email protected]

Joshua J. Turner

Lead Scientist     
[email protected]

Jake Koralek

Staff Scientist
(650) 926-3335 
[email protected]

Giacomo Coslovich

Laser Scientist    
(650) 926-5091    
[email protected]

Daniel Jost

Associate Scientist     
[email protected]

Lingjia Shen

Associate Scientist    
(650) 926-3087    
[email protected]

Mina Bionta

Associate Laser Scientist    
(650) 926-3884  
[email protected]

Patrick Oppermann

Staff Engineer    
(650) 926-2423    
oppermann@slac.stanford.edu

Raybel Almeida

Science & Engineering Associate
(650) 926-3370
[email protected]

LCLS | Linac Coherent Light Source
2575 Sand Hill Road MS103
Menlo Park, CA 94025
  • Facebook
  • Twitter
  • Instagram
  • Flickr
  • Youtube
  • LinkedIn
  • Staff portal
  • Privacy policy
  • Accessibility
  • Vulnerability disclosure
SLAC
  • SLAC home
  • Maps & directions
  • Emergency info
  • Careers

© 2025 SLAC National Accelerator Laboratory is operated by Stanford University for the U.S. Department of Energy Office of Science.

Stanford University U.S. Department of Energy
Top Top
Back to top Back to top
OSZAR »